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1 Introduction

An extensive empirical literature examines the relationship between inflation and economic

growth. The findings are wide-ranging and seem to depend on the methodology and sample

under consideration. Earlier studies, such as Bruno and Easterly (1998) and Ghosh and

Phillips (1998), either rely on descriptive techniques or do not account for country fixed

effects in regression analysis. Khan and Senhadji (2001), Bick (2010), and Kremer et al.

(2012) assume that nonlinearity is described by a piecewise linear structure and estimate

threshold models with country fixed effects. The common finding from these studies is that

inflation has a negative and significant effect on economic growth above a certain threshold,

but the threshold estimates are sensitive to modeling assumptions.

In this paper we focus on the nonlinear aspects of the inflation-growth relationship in

developing economies.1 In particular, we consider a semi-parametric panel data model with

country fixed effects and use the estimation techniques proposed by Baltagi and Li (2002).

In addition, we use an iterative fixed design wild-bootstrap procedure for bias correction

and inference. This flexible modeling framework allows us to estimate effects of inflation on

economic growth at different rates of inflation without imposing restrictive functional form

assumptions.

Our findings based on data from 92 countries from 1975-2004 can be summarized as

follows. First, similar to the aforementioned studies that use threshold models, we also find

that inflation becomes a significant detriment to growth only after it reaches a certain level.

However, our estimate of the inflation rate that is associated with a reduction in economic

growth is well below the estimate from the parametric threshold model. Second, the partial

effect of inflation exhibits a highly non-linear pattern. In particular, as one may expect, we

find that the marginal effect of a percentage point increase in inflation on growth declines

considerably as inflation reaches relatively high levels. Third, our estimates suggest that

the effect of inflation on growth over the range where it is statistically significant is notably

larger than those obtained from linear or threshold models. Fourth, we find considerable cross-

sectional and time-series variation in the partial effect of inflation on growth, which emphasizes

importance of heterogeneity in the growth dynamics and historical inflation experience across

countries.

The rest of the paper is organized as follows. We present the semi-parametric panel data

model and discuss related methodological issues in Section 2. Section 3 introduces the data

and presents the empirical results. Finally, section 4 concludes.

1Several papers utilize nonparametric methods to model nonlinearities in empirical growth regressions. In
particular, Liu and Stengos (1999) proposed an additive semi-parametric specification, which stimulated a
large body of research, e.g. Durlauf et al. (2001), Mamuneas et al. (2006) and Kalaitzidakis et al. (2001).
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2 Methodology

The semiparametric panel data model of interest is given by

yit = αi + γ′xit + g(zit) + uit, i = 1, . . . , N, t = 1, . . . , T, (1)

where αi’s represent unit fixed effects, xit is a d-dimensional vector of possibly endogenous

regressors, g(·) is a smooth function, zit is an r-dimensional vector of exogenous regressors,

and uit are zero mean i.i.d. innovations with variance σ2u. Thus, the model incorporates

heterogeneity through individual fixed effects and allows analysis of the nonlinear relationship

without imposing any specific functional form. Moreover, other relevant explanatory variables

are accounted for in a standard linear fashion.

To perform estimation, we first difference the data to eliminate the unobserved hetero-

geneity, αi. This yields,

Yit = γ′Xit +G(zit, zit−1) + Uit,

where Yit = yit − yit−1, and the right hand side variables are defined similarly. A further

simplification can be obtained by writing the model in the following form

Y = Xγ +G+ U, (2)

where Y is NT × 1 with typical element Yit, and X, G and U are constructed similarly.

Baltagi and Li (2002) propose estimating the model in Equation (2) with the series method.

They use K basis functions, say pK(z) = (p1(z), . . . , pK(z)), to approximate the unknown

function g(z). Therefore, pK(zit, zit−1) ≡ (pK(zit) − pK(zit−1)) approximates G(zit, zit−1) ≡
g(zit)−g(zit−1). Let pKit = pK(zit, zit−1) and P = (pK11, p

K
12, . . . , p

K
1T , . . . , p

K
N1, . . . , p

K
NT )′ and de-

fine M = P (P ′P )−1P ′.2 Pre-multiplying all variables in Equation (2) with M and subtracting

from the original equation yields

Y − Ỹ = (X − X̃)γ + (G− G̃) + (U − Ũ),

where Ỹ = MY , X̃ and G̃ are similarly defined. As shown by Baltagi and Li (2002), we can

consistently estimate γ by running the least squares regression of (Y − Ỹ ) on (X − X̃) since

G̃−G is negligible under regularity conditions for estimating γ. This yields

γ̂ =
[
(X − X̃)′(X − X̃)

]−1
(X − X̃)′(Y − Ỹ ).

Then g(z) can be estimated by ĝ(z) = pK(z)′δ̂ where δ̂ = (P ′P )−1P ′(Y −Xγ̂).

2For series estimation, power series and Legendre polynomials are used as the basis functions.
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In our dynamic panel application, the presence of initial income level on the right-hand

side causes bias in the first stage estimates. Several methods have been proposed in the lit-

erature to deal with similar bias arising in dynamic panel models. Kiviet (1995) corrects the

least squares dummy variable (LSDV) estimator using an analytical approximation formula

while Areallano and Bover (1995) and Blundell and Bond (1998) develop a system GMM

method that uses suitable lagged levels and lagged first differences of the regressors as instru-

ments. More recently, Everaert and Pozzi (2007) proposed an iterative bootstrap procedure

for dynamic panel data models. We find that GMM confidence intervals for the parameters of

the linear portion of the model are too wide such that no control, including the initial income

level, is significant. This is in contrast with the established findings in the empirical growth

literature. Therefore, we implement an iterative bootstrap procedure to deal with the bias

arising from endogeneity of the initial income and use a fixed-design wild bootstrap proce-

dure.3 This approach has the additional benefit of improving inference on the nonparametric

component of the model as asymptotic normal approximations for the nonparametric function

may perform poorly in finite samples. In addition, inference results from the fixed-design wild

bootstrap procedure are also robust to presence of cross sectional and temporal clustering in

the innovations.

Implementation of the semi-parametric estimation procedure requires determination of

the number of basis functions, K, which can be considered as an analog to the smoothing

parameter (bandwidth) in kernel based nonparametric analysis. Thus, picking a small number

of approximating functions may generate an over-smoothed (high bias, low variance) estimator

while selecting too many approximating functions may produce an under-smoothed (low bias,

high variance) estimator. Therefore, we estimate the number of basis functions by minimizing

a well-defined objective function. In particular, we employ generalized cross-validation (GCV)

and Mallow’s criterion:

K̂GCV = arg min
K

(NT )−1
∑N

i=1

∑T
t=1 (yit − ĝ(zit))

2

(1− ( K
NT ))2

,

K̂CL
= arg min

K

1

NT

N∑
i=1

T∑
t=1

(yit − ĝ(zit))
2 + 2σ2

K

NT
,

where σ2 is the variance of uit. Following Su and Ullah (2006), we conduct this search in the[
dnT e1/4, dnT e1/3

]
range, where dxe denotes the integer part of x.

3See Appendix B for a detailed description of the bootstrap procedure that we employ.
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3 Data and Empirical Results

Our empirical application of the semi-parametric panel data model to the inflation-growth

relationship in developing economies is based on a subset of the data set used in Kremer et al.

(2012). They consider 124 industrialized and developing countries through the period 1950

to 2004. Since our methods require a balanced panel, we eliminate the countries that do not

have data before 1975 and end up with a balanced panel of 92 developing countries from 1975

to 2004.4

We estimate the following semiparametric regression:

dgdpit = αi + γ′xit + g(π̃it) + uit,

where dgdpit is the growth rate of per capita GDP and the control variables, xit, include

population growth (dpop), investment as a share of GDP (igdp), the natural logarithm of

income per capita of the previous period (initial), change in terms of trade (dtot), standard

deviation of terms of trade (sdtot), the natural logarithm of the share of exports plus imports

in the GDP as a measure of openness (open), and standard deviation of openness (sdopen).5

We allow all right hand side variables other than inflation to be endogenous as in Kremer

et al. (2012), so our results do not necessarily imply a causal effect from inflation to growth.6

Following Khan and Senhadji (2001), we apply a semi-log transformation to inflation:

π̃it =

πit − 1, if πit ≤ 1%

ln(πit), if πit > 1%

where πit denotes the actual inflation rate for country i at time t. This transformation, which

is commonly used in the empirical literature on inflation-growth relationship, adjusts inflation

data to minimize the effects of cross sectional heteroskedasticity while preserving continuity.

The partial effect of inflation on growth, say β(π̃), is simply obtained as the derivative of g(π̃).

In accordance with the empirical growth literature, we take 5-year averages of the variables.

We display the scatter plot of average inflation and average GDP growth in Figure 1 to

get some insight into the unconditional relationship between growth and inflation. In general,

we do not observe a particular pattern, especially at low levels of inflation, but as average

inflation increases a weak negative relationship seems to appear.

4Appendix A contains a list of countries included in our analysis. Further details regarding the data set can
be found in Kremer et al. (2012) and the data can be downloaded from http://www.public.asu.edu/ abick/.

5Recent empirical research finds little or no significant effect of years of education on economic growth (see
Delgado et al. (forthcoming), Durlauf et al. (2008), and Liu and Stengos (1999)). Therefore, we do not include
education, a proxy for human capital, among our control variables. This also allows for a direct comparison of
our results with Kremer et al. (2012) who use the same set of controls.

6Using lagged inflation provides qualitatively similar results.
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To implement the semiparametric panel model in practice we need to select the number

of basis functions. Table 1 reports the number of basis functions and the corresponding loss

from our selection metrics, generalized cross-validation and Mallow’s criterion. We set K = 8

as this choice minimizes the loss according to both criteria.

Table 2 displays the coefficient estimates and bootstrap confidence intervals (at 90 per-

cent level) for the control variables that enter the model linearly. Sign and magnitude of the

estimates are broadly in line with the existing findings from the empirical growth literature.

The marginal effect of initial per capita GDP on growth is negative and statistically signifi-

cant. This finding is consistent with the conditional convergence hypothesis and suggests that

countries with initially low income per capita tend to grow faster than countries with higher

income per capita. Based on our bootstrap procedure, change in the terms of trade and share

of investment in GDP affect growth positively and they are also statistically significant. Other

controls are insignificant and the openness measure does not have the expected sign.

Our flexible semiparametric framework allows estimation of the unknown inflation function

at all sample points, which stands in strong contrast with the conventional linear model

as well as the threshold model that imposes a piecewise linear structure on the inflation

function. Figure 2 presents the estimates of the partial effects of log-transformed inflation,

β(π̃), along with the general bootstrap confidence intervals at 90 percent confidence level.

Two important points emerge from this figure. First, the point estimates are always negative,

but the magnitude and statistical significance are largely dependent on the level of inflation.

Second, the partial effect of inflation is significant only when log-transformed inflation is

between 2.45 and 4.65, which corresponds to a range of about 12 to 105 percent for the

underlying inflation rate. If we increase the confidence level to 95% (not shown on the figure),

the lower bound of this range increases to 2.65 for the log-transformed inflation rate (about

15 percent for the underlying inflation rate) and the upper bound remains unchanged.

To assess economic significance of our estimates and compare to alternative approaches, we

plot the corresponding partial effects with respect to inflation, say θ(π), in Figure 3. Since log-

transformed inflation is used in the regression, the estimates presented in this figure are simply

the partial effects with respect to the log-transformed inflation variable divided by the level of

inflation, i.e. θ(π) = β(π̃)/π. We present the results for inflation values ranging from 2 to 80

percent. Our estimates suggest that the partial effect of inflation attains its largest absolute

value as inflation approaches double digits. In the 8-9 percent range, an additional 1 percent

inflation is expected to be accompanied by about 0.1 percent slower growth rate in per capita

income. Beyond 9 percent inflation, the estimated partial effect decreases monotonically in

magnitude. Recall that the 90 percent bootstrap confidence intervals imply that inflation

becomes a statistically significant determinant of growth when it reaches about 12 percent.

At this level of inflation, the estimated partial effect is -0.097, which implies an economically

meaningful difference in growth. The estimated partial effect is almost halved from this level
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when inflation reaches about 35 percent and converges to -0.02 percent when inflation is

80 percent. That is, as one may expect, at very high levels of inflation a small increase in

the inflation rate has negligible effects on growth. These results highlight the importance of

containing inflation at reasonably low rates.

Figure 3 also shows estimated partial effects from linear and threshold models. The

threshold is estimated to be about 17 percent.7 Once the threshold is breached, the partial

effect of inflation on growth changes from about -0.005 to -0.02 and decreases in magnitude

monotonically in accordance with the piecewise linear structure of the threshold model. The

linear model and the threshold model provide almost identical estimates beyond the 17 percent

threshold and both are well below in magnitude compared to our semiparametric estimates.

The significant difference in the estimated magnitudes can be explained by the fact that

the threshold model imposes the same partial effect at all levels of log-transformed inflation

beyond the threshold and as a result the coefficient of inflation in the high inflation regime

amounts to an average across moderately high and very high levels of inflation.

To sum up, the results suggest that under linear or piecewise linear functional form as-

sumptions the partial effects of inflation on growth are much smaller in magnitude than those

implied by our flexible semiparametric approach. Moreover, our estimates indicate that the

threshold beyond which inflation becomes a statistically significant detriment to growth is

also dependent on the functional form assumptions.

Parameter heterogeneity is considered to be an important issue in empirical growth lit-

erature and several authors document strong evidence for extensive heterogeneity (see e.g.,

Durlauf and Johnson (1995) and Masanjala and Papageorgiou (2004)). An attractive feature

of our semiparametric approach is that we can shed light on the heterogeneity of the partial

effects of inflation on growth across countries.8 An effective way to summarize the results

is to plot kernel density of the partial effect estimates. We first compute the median partial

effect (across time) for each country in our sample and examine its distribution. Figure 4

shows the kernel density of the partial effect estimates across all countries in the sample using

Gaussian kernel and optimal bandwidth, i.e. h = 1.06σ̂n−1/5. Almost all of the estimates

fall in the negative region and the distribution has a large degree of dispersion. Moreover,

the estimated density is trimodal with the first mode roughly equal to −0.4, the second one

close to −1, and the third around −1.6. Thus, our results uncover an interesting aspect of

the inflation-growth relationship: on average, the marginal effect of inflation is negative but

considerable cross country variation is evident.

To gain further insight into the nature of the heterogeneity, we examine the cross sectional

distribution of β(π̃) over each five year interval in the sample. The corresponding kernel

7We thank Alexander Bick for making the Matlab code for estimating the threshold model available on his
website (http://www.public.asu.edu/ abick/).

8Henderson et al. (2013) and Henderson et al. (2012) find strong evidence for heterogeneous partial effects
in growth regressions using nonparametric techniques.
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density estimates are shown in Figure 5. The distribution during the first decade of the of

the sample period (1975-1985) is roughly symmetric around -1. A bimodal density emerges

in 1985-1990 according to which countries fall into one of two groups: the modal partial effect

is close to -0.5 in the first group while it is close to -2 in the second. In the final period of the

sample (2000-2004), the distribution clearly becomes trimodal with most countries having a

partial effect estimate less than -1 and a small group distributed around -1.5. These results

suggest that significant heterogeneity in the inflation-growth relationship emerged over time.

Finally, as a robustness check, we dropped insignificant controls from the linear portion of

the model. The results for the nonparametric function and partial effects are shown in Figures

6 and 7. A comparison with Figures 2 and 3 reveals that results are highly qualitatively

similar to the baseline case that includes all of the controls. The notable differences are that

the restricted model implies slightly smaller partial effects, on average, and a lower value for

the upper bound on the range of values for which inflation is statistically significant.

4 Concluding Remarks

We estimate a semiparametric empirical growth regression for developing economies in which

inflation enters the equation in a potentially nonlinear way with an unknown functional form.

We find that inflation becomes a significant detriment to growth only after it reaches about

12 percent, which is lower than the rate implied by a threshold model. Moreover, we also

find that the relationship ceases to be statistically significant at very high levels of inflation.

Our estimates for the partial effects indicate a larger impact of inflation on growth than

the estimates obtained under parametric functional form assumptions. We also document

considerable cross-sectional and time-series variation in the marginal effect of inflation on

growth, which emphasizes the constantly evolving cross sectional growth dynamics within the

developing world.
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Table 1: Basis Function Selection

K Generalized CV Mallow’s Criterion

4 16.590 16.736
5 16.478 16.659
6 16.124 16.334
7 16.037 16.276
8 15.927 16.202

Notes: This table reports the number of basis functions (K) and the corresponding loss from

two selection metrics: generalized cross-validation and Mallow’s criterion. The range of K is

determined with reference to Su and Ullah (2006).

Table 2: Bootstrap Confidence Intervals for Parametric Component of the Model

Variable Point estimate 90% Confidence Interval

initial -3.753 [−5.124,−2.382]
dpop -0.334 [−1.011, 0.344]
dtot 0.102 [0.052, 0.151]
igdp 0.087 [0.002, 0.172]
open -1.270 [−2.68, 0.14]
sdtot 0.043 [−0.007, 0.093]
sdopen 0.443 [−0.081, 0.966]

Notes: This table reports point estimates and bootstrap confidence intervals for the

linear portion of the model.
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A List of Countries Included in the Sample

Algeria Haiti Peru
Argentina Honduras Philippines
Bahamas Hong Kong Poland
Bahrain Hungary Romania
Barbados India Rwanda
Bolivia Indonesia Samoa
Botswana Iran Saudi Arabia
Brazil Israel Senegal
Burkina Faso Jamaica Sierra Leone
Burundi Jordan Singapore
Cameroon Kenya Solomon Islands
Central African Republic Korea (Republic of) South Africa
Chad Kuwait Sri Lanka
Chile Lesotho St. Lucia
China Madagascar St. Vincent & Grenadines
Colombia Malawi Sudan
Congo Republic of Malaysia Suriname
Costa Rica Mali Swaziland
Cote d‘Ivoire Malta Syria
Cyprus Mauritius Tanzania
Dominica Mexico Thailand
Dominican Republic Morocco Togo
Ecuador Nepal Tonga
Egypt Netherlands Antilles Trinidad & Tobago
El Salvador Nicaragua Tunisia
Ethiopia Niger Turkey
Fiji Nigeria Uruguay
Gabon Pakistan Venezuela
Gambia Panama Zambia
Ghana Papua New Guinea Zimbabwe
Guatemala Paraguay
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B Bootstrap and Bias Correction

B.1 Fixed-design Wild Bootstrap

The bootstrap confidence intervals are obtained via the following steps:

1. For each i = 1, . . . , N , and t = 1, . . . , T , obtain the bootstrap error u∗it = ûitεit, where
ûit = yit − ŷit, εit are i.i.d N(0, 1) across i and t, and ŷit is fitted value of yit obtained
from Equation (1).

2. Generate the bootstrap sample y∗it = ŷit + u∗it for i = 1, . . . , N , and t = 1, . . . , T .

3. Given a bootstrap sample for the dependent variable as {(y∗it, zit, xit), i = 1, . . . , N ,
t = 1, . . . , T} obtain the estimators of g(.) and γ, and denote the resulting estimates by
ĝ∗(.) and γ̂∗.

4. Repeat steps (1)-(3) a large number (B) of times to obtain the bootstrap samples ĝ∗k(.)
and γ̂∗k , k = 1, . . . , B. Let V ar∗(ĝ(.)) and V ar∗(γ̂) denote the sample variances of ĝ∗k(.)
and γ̂∗k , respectively.

5. Compute T ∗g,k =
|ĝ∗k(z)−ĝ(z)|
{V ar∗(ĝ(z))}1/2 and T ∗γ,k =

|γ̂∗k−γ̂|
{V ar∗(γ̂)}1/2 for k = 1, . . . , B.

6. Use the upper α percentile of T ∗g,k and T ∗γ,k, to estimate cg,α and cγ,α.

7. Construct the (1− α)× 100% bootstrap confidence intervals as follows:

ĝ(z)± {V ar(ĝ∗(z))}1/2cg,α
γ̂ ± {V ar(γ̂∗)}1/2cγ,α

B.2 Iterative Bootstrap Algorithm for Bias Correction

We search for a bias-corrected estimator for the linear component, γ, of the semi-parametric
model in Equation (1). In order to find the bias-corrected estimator, we iterate over the
bootstrap procedure. Steps for the iterative algorithm are as follows:

1. Given an estimate γ̃j for γ, generateB bootstrap samples and calculate γ̃bj = B−1
∑B

k=1 γ
∗
k

where γ∗k is the estimate obtained from the kth bootstrap.

2. Define ωj = γ̂ − γ̃bj where γ̂ is the initial estimate. Iterate until ωj = 0 by updating the
estimate as follows: γ̃(j+1) = γ̃j + ωj . Set γ̃1 = γ̂ to start the iteration.
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